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DsrD (dissimilatory sul®te reductase D) protein encoded by the dsr

operon of the sulfate-reducing bacterium Desulfovibrio vulgaris

Hildenborough has been crystallized using the vapour-diffusion

method with ammonium sulfate as a precipitating agent. The crystals

diffract to 1.7 AÊ resolution and belong to the orthorhombic space

group P212121, with unit-cell parameters a = 60.54 (6), b = 65.20 (4),

c = 46.41 (3) AÊ . The crystal contains two DsrD molecules per

asymmetric unit, giving a Matthews coef®cient (VM) of 2.6 AÊ 3 Daÿ1.

A gold-derivative (NaAuCl4) crystal has been successfully prepared.
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1. Introduction

DsrD protein is encoded by the dsr operon of

the sulfate-reducing eubacterium D. vulgaris

Hildenborough and is composed of only 78

amino-acid residues (Karkhoff-Schweizer et

al., 1995). The dsr operon also contains the

dsrAB genes for dissimilatory sul®te reductase

(DsrAB; desulfoviridin), which is an �2�2

tetramer with a molecular mass of 180 kDa

(Aketagawa et al., 1985). DsrD is expressed

constitutively in D. vulgaris Hildenborough

(Hittel & Voordouw, 2000). A function for the

DsrD molecule as a sul®te-binding protein for

DsrAB was suggested because of its relatively

high content of positively charged lysine resi-

dues (Karkhoff-Schweizer et al., 1995).

However, a recent spectroscopic study of

puri®ed DsrD failed to indicate binding of

either sul®te or sul®de with high af®nity (Hittel

& Voordouw, 2000). Since BLAST and FASTA

searches with the amino-acid sequence of

DsrD indicated no strong similarity to protein

sequences other than those of DsrD homologs

in other sulfate-reducing bacteria, the real

function of the DsrD protein in dissimilatory

sul®te reduction is still unknown. However, it

should have an important role, such as

a transcription factor for DsrAB. We

have started the X-ray structural study

of DsrD in order to clarify its function

with the high-resolution three-dimen-

sional structure.

2. Methods and results

DsrD was puri®ed by a method

reported recently (Hittel & Voordouw,

2000). Puri®ed DsrD in 40 mM Tris±

HCl buffer pH 7.2 was concentrated in

Centriprep-3 and Centricon-3 ultra-

®ltration tubes (Amicon) and stored at

193 K until use in crystallization. Purity was

checked by SDS±PAGE. Crystallization of

DsrD was achieved at 293 K by the hanging-

drop vapour-diffusion method. The drops were

prepared by mixing a protein solution

(40±60 mg mlÿ1) and 100% saturated ammo-

nium sulfate (®nal drop volume 10 ml) in a 1:2

ratio. The drops were equilibrated against

0.5 ml 73±75% saturated ammonium sulfate.

Suitable crystals for X-ray diffraction study

were obtained within one week. The dimen-

Figure 1
A crystal of the DsrD protein.

Figure 2
An diffraction pattern of DsrD crystal with a rotation range of
2.0�. The image was obtained using a screenless Weissenberg
camera (crystal-to-®lm distance 286.5 mm) at the BL-6A beamline
of the Photon Factory (KEK). The diffraction limit to the edge of
the image is 1.6 AÊ .
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sions of the crystals obtained were typically

0.3 � 0.3 � 1.0 mm (Fig. 1).

Diffraction data of the native crystals

were collected at room temperature to 2.0 AÊ

resolution using a Cu K� rotating-anode

source with a Rigaku R-AXIS IV image-

plate system. Data processing of 111 445

measured re¯ections led to 12 938 unique

re¯ections with an overall Rmerge of 0.049

using the programs DENZO and SCALE-

PACK from the HKL program package

(Otwinowski & Minor, 1997). The

crystals belong to space group

P212121, with unit-cell parameters

a = 60.54 (6), b = 65.20 (4), c =

46.41 (3) AÊ . Assuming two DsrD

molecules per asymmetric unit, the

Matthews coef®cient VM

(Matthews, 1968) is calculated to be

2.6 AÊ 3 Daÿ1 and the solvent content

of the crystal is found to be 53%.

Subsequently, a native data set to

1.7 AÊ resolution was collected at

room temperature using a 1.0 AÊ

wavelength X-ray beam on beam-

line BL-6A of the Photon Factory

(KEK). A screenless Weissenberg

camera equipped with a 0.1 �
0.1 mm collimator and a cassette of

286.5 mm radius (Sakabe et al.,

1996) was used for the data collection. Fig. 2

shows a typical X-ray diffraction pattern.

The intensity data, consisting of 68 048

measured re¯ections and 20 881 unique

re¯ections, were scaled and merged to give

an overall Rmerge of 0.035 using the HKL

package; the overall completeness (to

1.70 AÊ ) and completeness in the outer shell

(1.76±1.70 AÊ ) of the ®nal indexed structure

factors were calculated to be 94.3 and

86.6%, respectively.

Searches for heavy-atom derivatives were

performed on the native crystals by the

conventional soaking method. A diffraction

data set of a gold derivative (1 mM

NaAuCl4; 72 h soaking) was collected to

2.0 AÊ resolution at 293 K on beamline

BL-6A of the Photon Factory (KEK). The

derivative crystal [P212121, unit-cell para-

meters a = 60.19 (5), b = 65.25 (9),

c = 46.53 (4) AÊ ] was isomorphous to the

native crystal. Difference Patterson synth-

esis at 2.0 AÊ resolution calculated using the

CCP4 package (Collaborative Computa-

tional Project, Number 4, 1994) indicated

two major gold-binding sites in the asym-

metric unit (Fig. 3). The positions of two Au

atoms, probably binding to two different

DsrD molecules, were re®ned with the

program MLPHARE (Collaborative

Computational Project, Number 4, 1994),

considering the anomalous dispersion effect

of the Au atom. Interpretation of the

electron-density map treated by an electron-

density modi®cation method such as the

solvent-¯attening procedure is now in

progress.
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Figure 3
Harker sections of the difference Patterson map calculated
from the gold derivative and native crystals of DsrD protein at
2.0 AÊ (contours 1�). Two consistent peaks are marked Au1 and
Au2.


